Exceptional service in the national interest

ES036

Abuse Tolerance Improvements

Christopher J. Orendorff, Kyle R. Fenton, Ganesan Nagasubramanian, Josh Lamb, and Travis M. Anderson

Sandia National Laboratories

SAND2015-3119C

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2015 Energy Storage Annual Merit Review Washington, D. C. June 2015

Overview

Timeline

Start Date: Oct. 2014

End date: Oct. 2015

Percent complete: >75%

Budget

- FY15 Funding: \$700K
 - Abuse Evaluation/Prototyping \$500K
 - Development of abuse-tolerant components - \$200K
- FY14 Funding: \$750K
- FY13 Funding: \$1.0M

Barriers

Barriers addressed

- Develop intrinsically abuse-tolerant lithium-ion cells and batteries
- Issues related to cell safety are represent significant challenges to scaling up lithium-ion for transportation applications
- Obtain access to latest promising materials from developers and sufficient quantities of materials to determine reproducibility of results

Partners

- ANL, INL, NREL, ORNL, CU-Boulder
- XG Sciences, Physical Sciences Inc., Silatronix, Daikin

Relevance and Objectives

Developing inherently safe lithium-ion cell chemistries and systems

1. Evaluate Abuse Tolerance of High Energy Materials

- Understand the relative abuse response of higher energy materials in cells developed to meet the DOE EV goals
- Materials of interest for lithium-ion batteries include LMR-NMC, high voltage spinel, and intermetallic anodes.
- Characterization of abuse tolerance includes calorimetry, abuse testing, and analysis
 of gas decomposition products.

2. Abuse Resilient Component Development

 Design and develop material components to mitigate the severity of thermal runaway in lithium-ion cells

3. Evaluation of Abuse Resilient Electrolytes

- Build a series of >50 lithium-ion cells with various candidate and control electrolytes
- Evaluate electrochemical performance and abuse tolerance of candidate electrolytes relative to the control
- Make recommendations to VTO on candidate electrolytes that demonstrate good performance and improved abuse tolerance

Milestones

Demonstrate improved abuse-tolerant cells, and report to DOE and the battery community

Obj.	Milestone	Status	
1	LMR-NMC: Abuse response of LMR-NMC materials		
1	HV cathodes: Abuse response of high voltage cathode materials	Q3	
1	Intermetallic anodes: Abuse response of Si- and other intermetallic anode materials from ABR competitive projects (FY13 project deliverables)		
2	SNL ABA: ABA Scale-up at MERF		
2	SNL ABA: Evaluation of MERF scaled ABA, confirm performance		
2	SNL ABA: Identification of new candidate ABAs		
3	Electrolyte Study: Performance and safety evaluation of advanced electrolytes (ABA, Phosphazene, organosilicon, HFE)	Q4	

Milestone Complete

Approach

Safety Performance Abuse Testing Technology
Development
Synthesis
Modeling

Sandia (SNL)
Industry Partners
National Lab Partners

Scale-up
Cell Fabrication

Sandia (SNL)
Industry Partners
National Lab Partners

Technical Accomplishments/Progress/Results

Abuse Tolerance of High Energy Materials:

- LMR-NMC
 - ARC measurements and abuse tolerance of LMR-NMC cells
- Si-C anode characterization (XG Sciences):
 - Separate anode ARC measurements of Si-C and graphite electrodes to quantify differences in anode runaway response

Abuse Resilient Component Development:

- LiF/ABA Electrolytes
 - Abuse testing of LiF/ABA in NMC cells shows abuse response similar to COTS LFP cells
 - Scale-up of LiF/ABA at ANL MERF
 - Identification and synthesis of two new candidate ABAs
 - Evaluation of LiF/ABA from ANL shows comparable performance to small lot batch
 - Scaled-up LiF/ABA will enable a more complete evaluation of this component

Abuse Resilient Electrolyte Evaluation:

- LiF/ABA (SNL), Phosphazene (INL), Organosilicon (Silatronix), HFE (SNL).
 - Initial characterization of baseline LiPF₆/EC:EMC, LiF/ABA, and HFE-based electrolytes is in progress
 - Results show HFE to give moderate electrochemical performance but is nonflammable during cell venting failure conditions
 - Results show LiF/ABA to mitigate the severity of thermal runaway relative to the baseline LiPF₆-based electrolytes

Challenges with Inherent Cell Safety Sandia National Laboratories

Need to address these issues at the cell materials level in order to field the most inherently safe energy storage products

Abuse Tolerance of High Energy Materials

Quantifying Thermal Runaway Energetics of Cathode Materials in Lithium-Ion Cells

Intermetallic Anodes

Thermal runaway enthalpy of Si/C-NMC cells is ~10% greater than Graphite-NMC cells

Abuse Resilient Component Development

LiF/ABA electrolytes designed to mitigate the severity of lithium-ion cell thermal runaway

Summary of Accomplishments:

- Demonstration of abuse tolerance (OC & TR)
- Delivery of LiF/ABA synthesis to ANL MERF in Q1 FY15
- 100 g LiF/ABA scaled-up at ANL MERF in Q2 FY15
- 40 g LiF/ABA delivered to SNL for evaluation
- scaled up LiF/ABA performance comparable to small batch LiF/ABA (data in following slides)
- Submission of high temperature LiF/ABA samples to ANL CAMP for analysis

Advanced Electrolyte Development

Objective: Systematically evaluate a series of electrolytes to determine the relative electrochemical performance and abuse tolerance in NMC/graphite cells

Candidate Electrolytes						
Electrolyte	Formulation	Advertised Attributes				
Baseline	1.2 M LiPF ₆ in EC:EMC (3:7)	Good electrochemical performance Not particularly good abuse tolerance, flammable, etc.				
ABA	1.0 M LIF/ABA + 2% VC	Mitigate the severity of a cell thermal runaway, enhance abuse tolerance				
Phosphazene (FM2)	1.2 M LiPF ₆ in EC:EMC (3:7) + 10% FM-2	Flame retardant, limit the severity of a cell thermal runaway				
Organosilicon (OS)	Proprietary	Thermally Stable				
Hydrofluoro ether (HFE)	1.0 M LiTFSI in EC:DEC:HFE (5:45:50)	Non-flammable, minimal impact on electrochemical performance				

Metrics for Performance

- Performance metrics
 - Conductivity¹ ≥ 12 mS/cm at RT
 - Voltage stability¹ Stable to 5.0 V
 - Discharge capacity 10% of baseline
 - Cycle life¹ ≥80% capacity retention @ 1000 cycles (full DOD)
- Abuse tolerance metrics²
 - ARC Heating rate < 5 °C/min
 - Thermal Ramp EUCAR ≤4
 - Overcharge EUCAR ≤4
 - Flammability no ignition, no sustained fire

Advanced Electrolyte Development Sandia National Laboratories

Evaluation Matrix										
Electrolyte	Performance				Abuse Tolerance					
Liectiolyte	Conductivity	CV	Capacity	Cycle life	Rate	DSC	ARC	Thermal	Overcharge	Flammability
Baseline										
ABA										
FM2										
OS										
HFE										

Complete
In progress

Electrochemical Performance

LiF/ABA conductivity > 10 mS/cm, HFE conductivity significantly less $< 50 \mu A/cm^2$ for HFE and $< 75 \mu A/cm^2$ for LiF/ABA at 4.5V

Electrochemical Performance

5th cycle discharge capacity LiF/ABA comparable to baseline; HFE cell ~5% less capacity Baseline gives 93% capacity retention at 500 cycles (no additives)

Abuse Tolerance

- Significant reduction in the thermal runaway free energy of NMC cells with LiF/ABA electrolytes
- Higher thermal runaway free energy of NMC cells with HFE electrolytes likely due to the DEC solvent component (ΔH_c (DEC) = 2715 kJ/mole, ΔH_c (EMC) ~ 2000 kJ/mole)

Electrolyte Gas Generation

~60% reduction in gas volume between baseline and HFE electrolyte ~40% reduction in gas volume at the cell-level between baseline and HFE electrolyte ~30% reduction in gas volume at the cell-level between baseline and LiF/ABA electrolyte

Abuse Tolerance

Cell Vent Flammability Measurements

LiF/ABA cells are more abuse tolerance than their baseline counterparts LiF/ABA in carbonate solvents is flammable in a cell vent failure HFE electrolyte at 50% HFE is non-flammable in a cell vent failure 18

Collaboration and Coordination with Other Institutions

HE Materials

- XG Sciences
- ANL
- NEI

Abuse Resilient Component Development

- Binrad Industries
- ANL MERF
- ANL CAMP

Electrolyte Evaluation

- INL
- Silatronix
- ANL (MERF)

Proposed Future Work

- Complete evaluation of intermetallic anode materials (runaway response, abuse tolerance, gas generation)
- Evaluation of abuse tolerance of materials developed from the competitive ABR projects
- Evaluation of new candidate LiF/ABA electrolytes with enhanced performance and abuse tolerance characteristics
- Completion of the electrolyte evaluation study and recommendation to DOE of the most promising abuse tolerant electrolyte materials for follow-on work
- Support the safety related elements of the of DOE EBMR,
 ABR, Testing, CAEBAT, and USABC programs

Summary

- Fielding the most inherently safe chemistries and designs can help address the challenges in fielding large-scale lithium-ion
- Materials choices can be made to improve the inherent safety of lithium-ion cells
- LiF/ABA electrolytes show comparable electrochemical performance to
 LiPF₆/carbonate baseline electrolyte and cells and cycle life evaluation is currently in progress
- LiF/ABA electrolytes show a significant improvement in thermal runaway response and abuse tolerance of NMC cells; almost eliminating the high rate runaway reaction in some cases
- HFE electrolyte shows modest electrochemical performance compared to LiPF₆/carbonate baseline electrolyte with reduced conductivity, good high voltage stability, and ~5% loss in discharge capacity in NMC cells
- HFE electrolytes show a significant reduction in the total gas generation and no ignition or flammability under a cell vent failure; thermal runaway performance is more energetic in the HFE electrolyte, but that is likely due to the DEC component
- Evaluation of organosilicon and phosphazene electrolytes are in progress

Acknowledgements

- Dave Howell (DOE)
- Peter Faguy, OVT team (DOE)
- Rob Privette (XG Sciences)
- Ram Nagubandi (Binrad)
- Steven George (CU-Boulder)
- Jon Travis (CU-Boulder)
- Andy Jansen (ANL)
- Bryant Polzin (ANL)
- David Wood (ORNL)
- Greg Krumdick (ANL)
- Kris Pupek (ANL)
- Eric Dufek (INL)
- Kevin Gering (INL)

- Tom Wunsch
- Mani Nagasubramanian
- Travis Anderson
- Harry Pratt
- Chad Staiger
- Leigh Anna Steele
- Bill Averill
- Pete Roth
- Josh Lamb
- Jill Langendorf
- Lorie Davis
- Scott Spangler

TECHNICAL BACK-UP SLIDES

Abuse Tolerance of Active Materials

Quantifying Thermal Runaway Energetics of Anode Materials in Lithium-Ion Cells (Collaboration with CU-Boulder)

Abuse Tolerance of Intermetallic Anodes

Key Questions:

- General impact of intermetallic anodes on thermal runaway response (heat release)?
- Impact of intermetallic anodes on electrolyte reactivity, decomposition, & gas generation?
- Abuse response of intermetallic anodes (any unanticipated failure modes or intolerance to abuse conditions relative to graphite)?
- Support development efforts to improve loading, cycle life and power over time

Intermetallic Anodes

Thermal runaway enthalpy of Si/C-NMC cells is ~10% greater than Graphite-NMC cells

Vent Gas Analysis from the ARC

18650 cell electrodes separated from a cell at 100% SOC and repackaged in 18650 cans Grab samples collected during an ARC experiment and analyzed Analysis show significantly more $\rm H_2$ and CO generation at the anode interface

Abuse Tolerance of Intermetallic Anodes

Quantifying Gas Generation from Anode Materials in Lithium-Ion Cells

No experimental or DFT/simulation work on electrolytes + Si to study gas generation Engage PTF for electrode analysis to elucidate the reaction mechanism of electrolyte + Si